Дипломная работа

от 20 дней
от 7 499 рублей

Курсовая работа

от 10 дней
от 1 499 рублей

Реферат

от 3 дней
от 529 рублей

Контрольная работа

от 3 дней
от 79 рублей
за задачу

Билеты к экзаменам

от 5 дней
от 89 рублей

 

Реферат Генетические особенности индивидуального развития - Естествознание

  • Тема: Генетические особенности индивидуального развития
  • Автор: Ольга
  • Тип работы: Реферат
  • Предмет: Естествознание
  • Страниц: 18
  • ВУЗ, город: Москва
  • Цена(руб.): 500 рублей

altText

Выдержка

пример, метамера или серии метамеров). Иначе говоря, результатом морфогенеза является формирование признака. По числу возможных конечных результатов морфогенез может быть моновариантным (инвариантным) и поливариантным (мультивариантным).
Морфогенез протекает при участии генетических и парагенетических факторов. Множество генетических факторов (генотип) образует генетическую программу морфогенеза, которая возникает в момент образования единицы развития (например, нового организма или его части). Поливариантность морфогенеза может быть заложена уже в самой генетической программе. Парагенетические факторы появляются в единице развития уже в ходе самого морфогенеза, они создают условия для реализации наследственной программы.
3.1.Одностадийные и многостадийные программы
Одностадийные программы предусматривают только один переход от начала морфогенеза к его завершению. Одностадийные программы всегда являются элементарными. Понятие элементарности подразумевает неделимость программы на составные части, ее устойчивость к парагенетическим воздействиям: слабые воздействия не влияют на ход морфогенеза, а сильные – прерывают выполнение программы. По количеству возможных траекторий морфогенеза одностадийные программы делятся на неразветвленные и разветвленные. В неразветвленной программе закодирована только одна возможная траектория морфогенеза. В результате реализации такой программы оказывается возможным только один нормальный результат развития. В разветвленной программе закодировано несколько взаимоисключающих траекторий морфогенеза. В результате реализации такой программы оказывается возможным достижение нескольких взаимоисключающих нормальных результатов развития.
Многостадийные программы включают несколько переходов, каждый из которых завершается достижением определенного промежуточного состояния (узла). Многостадийные программы могут быть элементарными и составными. Элементарная программа должна быть выполнена до конца, в противном случае наблюдаются нарушения морфогенеза (морфозы и тераты). В этом отношении элементарные программы внешне сходны с одностадийными линейными программами. Составные программы основаны на явлении анаболии: каждое последующее промежуточное состояние является надстройкой по отношению к предыдущему. При этом морфогенез может остановиться при достижении любого промежуточного состояния. В результате образуются гипоморфозы – недоразвитые структуры.
3.2. Неразветвленные и разветвленные программы  
Неразветвленные программы предусматривают лишь одну траекторию морфогенеза; любое отклонение от этой траектории приводит к гибели организма. Разветвленные программы предусматривают существование нескольких траекторий морфогенеза. Разветвление обусловлено триггерным эффектом – по достижении определенного промежуточного состояния перед биологической системой открывается возможность переключения, или выбора дальнейшего пути развития (таким образом, триггер можно представить себе как железнодорожную стрелку, перевод которой осуществляется стрелочником или диспетчером). Многостадийные разветвленные программы делятся на древовидные и сетевые. В древовидных программах траектории морфогенеза не пересекаются. Тогда выбор одной из траекторий морфогенеза в узловых точках исключает ряд возможных конечных результатов. В сетевых программах траектории морфогенеза пересекаются в узловых точках таким образом, что достижение одного результата возможно разными способами. 
3.3. Простые и сложные программы
Простые программы включают только одну подпрограмму или несколько идентичных подпрограмм. Каждая подпрограмма обозначается определенным символом (например, А). Тогда диплоидные единицы развития содержат две идентичные подпрограммы развития, дублирующие друг друга. Тогда простая программа может быть обозначена двумя одинаковыми символами (например, АА). С точки зрения формальной генетики, носитель простой программы может быть назван гомозиготой.
Сложные программы включают несколько подпрограмм, которые обозначаются сходными символами (например, А и а). В этом случае диплоидные единицы развития содержат две сходные подпрограммы развития, различным образом взаимодействующие между собой. Тогда сложная программа может быть обозначена двумя сходными символами (например, Аа), а носитель сложной программы может быть назван гетерозиготой. Таким образом, для многих генов характер их проявления жестко не предопределен; фенотип организма формируется в ходе развития на основе взаимодействия генотипа и среды.
 4. Механизмы реализации программ онтогенеза
Реализация программ морфогенеза происходит под воздействием комплекса генетических и негенетических (парагенетических) факторов. Генетические программы морфогенеза образованы двумя группами генов.
1. Гены, управляющие переключением: главные гены, «гены-господа». К ним относятся гены-регуляторы, продукты которых влияют на экспрессию других генов, и гомеозисные гены, продуцирующие морфогены – вещества, определяющие морфогенетические процессы. К морфогенам относятся как тканеспецифические вещества (например, гормоны), так и неспецифические низкомолекулярные соединения (ретиноивая кислота).
2 Гены, обеспечивающие переход от одного состояния (узла) к другому: исполняющие гены, «гены-рабы», продуктами которых являются ферменты, структурные белки.
Экспрессия всех генов контролируется разнообразными эффекторами. Часть из них закодирована в генотипе, часть – поступает в клетки извне или образуется в ходе метаболических реакций. Синтез эффекторов контролируется условиями внешней среды, например, белки «теплового шока», регулирующие процессы транскрипции, синтезируются у дрозофилы при температуре свыше 35 °С, при воздействии антибиотика антимицина А, гидроксиламина, колхицина, хлорида аммония и других веществ.
Регуляция экспрессии всех генов происходит на различных уровнях.
Регуляция на генном уровне
1. Модификация ДНК (например, замена цитозина или гуанина на метил-цитозин или метил-гуанин; метилирование оснований снижает активность генов).
2. Увеличение объема ДНК в клетке путем дифференциальной амплификации ДНК (например, многократное копирование генов рРНК) или за счет образования политенных хромосом.
3. Программированные количественные изменения ДНК (например, изменение ориентации промотора).
4. Сплайсинг ДНК (например, вырезание участков генов, кодирующих антитела).
5. Диминуция хроматина – необратимая утрата части генетического материала в соматических клетках некоторых организмов (инфузорий, аскарид, циклопов).
6. Изменение активности целых хромосом (например, инактивация одной из двух X–хромосом у самок млекопитающих).
7. Изменение последовательностей ДНК с помощью подвижных генетических элементов, например, транспозонов.
Регуляция на уровне транскрипции – путем регуляции транскрипции мРНК. Интенсивное функционирование отдельных генов или их блоков соответствует определенным этапам развития и дифференцировки. Регуляторами транскрипции у животных часто являются стероидные гормоны.
Регуляция на уровне сплайинга (посттрансляционной модификации мРНК) – обеспечивает возможность образования различных типов зрелой, функционально активной мРНК. Процессинг РНК регулируется с помощью рибозимов (катализаторов рибонуклеиновой природы) и ферментов матураз. Некоторые генетические заболевания человека (фенилкетонурия, некоторые гемоглобинопатии) обусловлены нарушением сплайсинга.
Регуляция на уровне трансляции – обусловлена различной активностью разных типов мРНК.
Регуляция на уровне посттрансляционной модификации белков – регулируется путем посттрансляционной модификацией белков (фосфорилированием, ацетилированием, расщеплением исходной полипептидной цепи на более мелкие фрагменты и т.д.).
Рассмотренные примеры свидетельствуют о многообразии способов реализации генетической информации путем регуляции активности самих генов либо их продуктов. Для клетки наиболее экономична регуляция на уровне транскрипции, поскольку она препятствует образованию соответствующих мРНК и белков, когда клетка не испытывает в них потребности. Вместе с тем регуляция на уровне транскрипции идет сравнительно медленно, тогда как, например, активация белков путем расщепления молекул-предшественников хотя и неэкономична, но происходит очень быстро.
Гомеозисные мутации. При нарушении структуры гомеозисных генов возникают гомеозисные мутации, которые изменяют порядок экспрессии исполняющих генов. Фенотипический эффект гомеозисных мутаций заключается в превращении одних органов в другие.
Например, у мушки дрозофилы мутация группы генов bithorax, контролирующих развитие грудных и брюшных сегментов у дрозофилы, может приводить к появлению крылоподобных образований вместо галтеров. Мутации группы генов antennapedia выражаются в том, что у насекомых на месте антенн вырастают ножки. Мутации ophthalmoptera приводят к развитию крыла из имагинального диска глаза. Мутации proboscipedia приводят к развитию ноги или части антенны (в зависимости от температуры) вместо хоботка. У мутантов tumorous head ткани головы замещаются другими типами тканей, включая структуры, характерные для гениталий.
 


Заключение
Таким образом, на основании изложенного материала можно сформулируем основные атрибуты онтогенеза.
1. Исходная запрограммированность процессов. Наличие уникальной неизменной генетической программы развития, сформированной вследствие мейоза и оплодотворения.
2. Необратимость онтогенеза. При реализации генетической программы невозможен возврат к предыдущим стадиям.
3. Углубление специализации: по мере развития уменьшается вероятность смены траектории онтогенеза.
4. Адаптивный характер: поливариантность  онтогенеза обеспечивает возможность приспособления к различным условиям.
5. Неравномерность темпов: скорость процессов роста и развития изменяется.
6. Целостность и преемственность отдельных этапов. Признаки, появляющиеся на более поздних стадиях, базируются на признаках, проявляющихся на ранних стадиях.
7. Наличие цикличности.
8. Наличие критических периодов, связанных с выбором пути в узловых точках (точках бифуркации) или с преодолением энергетических порогов.





Библиографический список
Алиханян С.И. Общая генетика: Учеб. для студ. биол. спец. ун-тов. – М.: Высш. шк., 1985. – 448 с.
Биологический энциклопедический словарь / Гл. ред. М.С. Гиляров. – М.: Сов. энциклопедия, 1989. – 864 с.
Генетика / Под ред. Б. Гуттман, Э. Гриффитс, Д. Сузуки, Т. Куллис. – М.: ФАИР-ПРЕСС, 2004. – 448с.
Генетика человека / Под ред. В.А. Шевченко, Н.А. Топорнина, Н.С. Стволинская. – М.: ВЛАДОС, 2004. – 240 с.
Геном, клонирование, происхождение человека / Под ред. Л.И. Корочкина. – Фрязино: Век2, 2004. – 224 с.
Гужов Ю.Л. Генетика и селекция – сельскому хозяйству. – М.: Просвещение, 1984. – 240 с.
Корочкин Л. И. Взаимодействие генов в развитии.− М.: Наука, 1977. − 280с.Рэфф Р., Кофмен Т. Эмбрионы, гены и эволюция. − М.: Мир, 1986. − 402 с.

 

НАШИ КОНТАКТЫ

Skype: forstuds E-mail: [email protected]

ВРЕМЯ РАБОТЫ

Понедельник - пятница 9:00 - 18:00 (МСК)

ПРИНИМАЕМ К ОПЛАТЕ